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ANALYSIS OF THREE-DIMENSIONAL, NONLINEAR
DEVELOPMENT OF WAVE-LIKE STRUCTURE IN A

COMPRESSIBLE ROUND JET

Milo D. Dahl∗

Glenn Research Center

Reda R. Mankbadi†

Embry-Riddle Aeronautical University

ABSTRACT
An analysis of the nonlinear development of the large-scale
structures or instability waves in compressible round jets
was conducted using the integral energy method. The equa-
tions of motion were decomposed into two sets of equa-
tions; one set governing the mean flow motion and the
other set governing the large-scale structure motion. The
equations in each set were then combined to derive kinetic
energy equations that were integrated in the radial direction
across the jet after the boundary-layer approximations were
applied. Following the application of further assumptions
regarding the radial shape of the mean flow and the large
structures, equations were derived that govern the nonlin-
ear, streamwise development of the large structures. Using
numerically generated mean flows, calculations show the
energy exchanges and the effects of the initial amplitude
on the coherent structure development in the jet.

INTRODUCTION
Strong evidence suggests that jet noise, particularly in

the supersonic regime, is dominated by contributions from
wave-like structures in the initial region in the jet that are
associated with Mach-wave radiation. These structures
cannot be captured by classical turbulence modeling. Di-
rect Numerical Simulations (DNS) and Large Eddy Simu-
lations (LES) can successfully capture these structures, but
they are computationally intensive.

There have been several attempts to model this structure
using the integral energy approach. The basic idea is that
the coherent structure is modeled as nonlinear instability
waves that grow and decay along the jet. Each flow com-
ponent is split into three quantities: a time-average mean
component, a large-scale wave-like coherent component,
and a fine-scale random turbulence component. Starting
from the full compressible Navier-Stokes equations and us-
ing time averaging, the momentum equations for each flow
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component can be obtained. These equations are then used
to derive the kinetic energy equations, which are integrated
across the jet to produce a set of simultaneous, ordinary
differential equations describing the interactions among the
various scales of motion. Shape assumptions are then made
to close these equations to obtain the development of each
flow component. The plane shear layer case has been stud-
ied by several researchers.1, 2 The incompressible round
jet case has been studied for single and multi-frequency
modes.3, 4 The compressible planar shear layer case has
been studied by Lee & Liu.5 The focus of this study is
the compressible, supersonic round jet case because of its
obvious relevance to practical applications.

Apart from modeling the physics involved, the study
of the development of the coherent mode was conducted
to simulate excited jets. Excitation via single or multi-
frequency mode has been conducted in the past to control
the jet signature. For instance, Raman et al.6 show that by
exciting an incompressible round jet via forced waves of
various frequencies, amplitudes, and phases, the jet can be
made to spread faster and thus may reduce its noise signa-
ture. Arbey & Ffowcs-Williams7 considered the objective
of reducing the peak noise by forcing an excitation wave at
the subharmonic frequency of the peak noise. They showed
that an interaction process could occur that would result
in suppressing the fundamental and thus reducing the peak
noise.

The starting point of this analysis is that we consider
a turbulent round jet at a sufficiently high speed so that
the compressibility is significant. The development of this
jet in the unexcited case is assumed to be given by some
other means (e.g. analytically or via Reynolds averaged
numerical simulations). This jet is then excited by a single-
frequency instability wave. The nonlinear development of
this wave will be presented herein based on the integral
energy approach. Along with the wave development, the
mean flow-spreading rate is also modified and will be pre-
sented herein. Since the focus here is the supersonic jet, we
must consider the helical modes as they are more amplified
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than the axisymmetric ones.8 Once the computations are
completed, a description of all the variables of the large-
structure disturbance field in and near the jet is given for
a particular mode number and frequency. It can be used
as the acoustic source to compute the noise radiation field
outside of the jet. This is described in a separate paper.9

FORMULATION OF THE PROBLEM
Consider a high-Reynolds number turbulent jet issuing

from a nozzle of diameter D in a still air. The jet is
shock-free, but the Mach number is high enough for com-
pressibility effects to be significant. The jet is excited
by a single-frequency instability wave of Strouhal num-
ber fD/U j . The density and the component velocities are
normalized by the jet exit density and axial velocity at the
centerline, ρj and U j , respectively. The pressure is normal-

ized by ρjU
2

j , time by D/U j , and spatial coordinates by
D. Each flow parameter is split into a time-averaged part
U i(x, r, φ), a coherent, wave-like part, u′

i(x, r, φ, t), and a
fine-scale random turbulence part, u′′

i (x, r, φ, t). Thus, the
velocity can be written :

ui = U i(x, r, φ) + u′

i(x, r, φ, t) + u′′

i (x, r, φ, t) (1)

where i = 1, 2, 3. In the cylindrical coordinates, 1 refers
to the axial direction x with axial velocity u, 2 refers to the
radial direction r with radial velocity v, and 3 refers to the
azimuthal direction φ with azimuthal velocity w. An over
bar, ( ), denotes a time-averaged quantity. The pressure
and the density are similarly split:

p = P (x, r, φ) + p′(x, r, φ, t) + p′′(x, r, φ, t) (2)

ρ = ρ(x, r, φ) + ρ′(x, r, φ, t) + ρ′′(x, r, φ, t) (3)

In the subsequent analysis, however, the random tur-
bulence component will not be explicitly considered any
further, thus we have

ui = U i(x, r, φ) + u′

i(x, r, φ, t) (4)

p = P (x, r, φ) + p′(x, r, φ, t) (5)

ρ = ρ(x, r, φ) + ρ′(x, r, φ, t) (6)

For the product of the density with the velocities, we get

(ρui) = (ρ + ρ′)(U i + u′

i) = ρU i + ρ u′

i + ρ′ U i + ρ′u′

i

Time-averaging yields

(ρui) = ρU i + ρ′u′

i (7)

and we define

ũi ≡ ρui − ρui = ρ u′

i + ρ′ U i + ρ′u′

i − ρ′u′

i.

Neglecting the difference between the product of distur-
bance variables and the averaged value of the product re-
sults in

ũi ≈ ρu′

i + ρ′ U i. (8)

Equations of motion
The formulation begins with the following nondimen-

sionalized continuity and momentum equations in cylindri-
cal coordinates:

ρt + (ρu)x +
1

r
[r(ρv)]r +

1

r
(ρw)φ = 0 (9)

(ρu)t +
(
ρu2 + p

)
x

(10)

+
1

r
[r (ρuv)]r +

1

r
(ρuw)φ =

1

Re
∆u

(ρv)t + (ρuv)x (11)

+
1

r

[
r
(
p + ρv2

)]
r
+

1

r
(ρvw)φ −

ρw2

r

=
p

r
+

1

Re

[
∆v −

1

r2
(v + 2wφ)

]

(ρw)t + (ρuw)x (12)

+
1

r
[r (ρvw)]r +

1

r

(
p + ρw2

)
φ

+
ρwv

r

=
1

Re

[
∆w −

1

r2
(w − 2vφ)

]

where the Reynolds number is Re = ρjU jD/µ. The sub-
scripts denote differentiation and the Laplacian is

∆ =
∂2

∂x2
+

1

r

∂

∂r
r

∂

∂r
+

1

r2

∂2

∂φ2
.

Substituting relations (4) to (8) into (9) to (12), we get:

(ρ + ρ′)t + (ρu + ũ)x (13)

+
1

r
[r (ρv + ṽ)]r +

1

r
(ρw + w̃)φ = 0

(ρu + ũ)t +
[
P + p′ +

(
U + u′

)
(ρu + ũ)

]
x

+
1

r

[
r
(
V + v′

)
(ρu + ũ)

]
r
+

1

r

[(
W + w′

)
(ρu + ũ)

]
φ

=
1

Re
∆
(
U + u′

)
(14)

(ρv + ṽ)t +
[(

U + u′
)
(ρv + ṽ)

]
x

+
1

r

[
r
(
P + p′ +

(
V + v′

)
(ρv + ṽ)

)]
r

+
1

r

[(
W + w′

)
(ρv + ṽ)

]
φ
−

1

r

(
W + w′

)
(ρw + w̃)

=
1

r

(
P + p′

)
(15)

+
1

Re

[
∆
(
V + v′

)
−

1

r2

(
V + v′ + 2

(
W + w′

)
φ

)]
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(ρw + w̃)t +
[(

U + u′
)
(ρw + w̃)

]
x

+
1

r

[
r
(
V + v′

)
(ρw + w̃)

]
r
+

1

r

(
V + v′

)
(ρw + w̃)

+
1

r

[
P + p′ +

(
W + w′

)
(ρu + ũ)

]
φ

(16)

=
1

Re

[
∆
(
W + w′

)
−

1

r2

(
W + w′ − 2

(
V + v′

)
φ

) ]

These equations will be used to derive a set of equations
governing the mean flow and a set of equations governing
the large-scale structures.

Mean flow

The mean flow equations are obtained by time-averaging
equations (13) to (16) containing the two-component de-
composition. The continuity equation for the mean flow
is (

ρ U
)
x

+
1

r

[
r
(
ρ V
)]

r
+

1

r

(
ρW

)
φ

= 0 (17)

and the three momentum equations for the mean flow are:
(
ρU

2

+ u′ũ + P
)

x
+

1

r

[
r
(
ρU V + v′ũ

)]

r

+
1

r

(
ρW U + w′ũ

)

φ
=

1

Re
∆U (18)

(
ρ U V + u′ṽ

)

x
+

1

r

[
r
(
ρ V

2

+ v′ṽ + P
)]

r

+
1

r

(
ρW V + w′ṽ

)

φ
−

1

r

(
ρW

2

+ w′w̃
)

=
1

r
P +

1

Re

[
∆V −

1

r2

(
V + 2Wφ

)]
(19)

(
ρ U W + u′w̃

)

x
+

1

r

[
r
(
ρ V W + v′w̃

)]

r

+
1

r

(
ρW

2

+ w′w̃ + P
)

φ
+

1

r

(
ρW V + v′w̃

)

=
1

Re

[
∆W −

1

r2

(
W − 2V φ

)]
. (20)

Large-scale structure

The equations governing the large-scale structures are
obtained by subtracting the mean flow equations (17) to
(20) from equations (13) to (16). The second order terms
are neglected with respect to first order terms and the terms
u′

iũj − u′

iũj are also neglected. The continuity and mo-
mentum equations for the large-scale structures are:

ρ′t + ũx +
1

r
(rṽ)r +

1

r
w̃φ = 0 (21)

ũt +
(
p′ + ρUu′ + ũ U

)
x

+
1

r

[
r
(
ρUv′ + ũ V

)]
r

+
1

r

(
ρUw′ + ũ W

)
φ

=
1

Re
∆u′ (22)

ṽt +
(
ρ V u′ + ṽ U

)
x

+
1

r

[
r
(
p′ + ρV v′ + ṽ V

)]
r

+
1

r

(
ρ V w′ + ṽ W

)
φ
−

1

r

(
ρWw′ + w̃ W

)

=
1

r
p′ +

1

Re

[
∆v′ −

1

r2

(
v′ + 2w′

φ

)]
(23)

w̃t +
(
ρWu′ + w̃ U

)
x

+
1

r

[
r
(
ρWv′ + w̃ V

)]
r

+
1

r

(
p′ + ρWw′ + w̃ W

)
φ

+
1

r

(
ρWv′ + w̃ V

)

=
1

Re

[
∆w′ −

1

r2

(
w′ − 2v′

φ

)]
(24)

Kinetic energy equations
Mean flow kinetic energy equation

The mean flow kinetic energy equation is obtained by
first multiplying the x-momentum equation (18) by U , the
r-momentum equation (19) by V , and the φ-momentum
equation (20) by W . Then, the resulting equations are
added together. This combined equation is composed of
several main terms including the stress terms, the pressure
terms, and the viscosity terms. Using the mean flow con-
tinuity equation and defining the mean flow kinetic energy

as K = (U
2

+ V
2

+ W
2

)/2, the combined equation is re-
arranged to obtain the kinetic energy equation for the mean
flow

∂

∂x

(
ρUK + u′ũ U + u′ṽ V + u′w̃ W + U P

)

+
1

r

∂

∂r

[
r
(
ρV K + v′ũ U + v′ṽ V + v′w̃ W + V P

)]

+
1

r

∂

∂φ

(
ρWK + w′ũ U + w′ṽ V + w′w̃ W + W P

)

− P

(
Ux +

1

r

(
rV
)
r
+

1

r
Wφ

)

− Uxu′ũ − V xu′ṽ − W xu′w̃ − U rv′ũ

− V rv′ṽ − W rv′w̃ −
1

r
Uφw′ũ −

1

r
V φw′ṽ

−
1

r
Wφw′w̃ −

1

r
V w′w̃ +

1

r
W v′w̃

=
1

Re

[
∆K −

(
U ix

)2
−
(
U ir

)2
−

1

r2

(
U iφ

)2

−
V

r2

(
V + 2W φ

)
−

W

r2

(
W − 2V φ

)
]

(25)

where (U ix)2 = (Ux)2 +(V x)2 +(W x)2 and similarly for
(U ir)

2 and (U iφ)2.

Large-scale kinetic energy equation

The large-scale energy equation is obtained by multiply-
ing the x-momentum equation (22) by u′, the r-momentum
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equation (23) by v′, and the φ-momentum equation (24)
by w′. Again, the resulting equations are added together
and the time-average is applied. This equation requires
extensive manipulation to obtain its final form. The large-
scale continuity equation (21) and equation (8) are used to
combine terms. Defining the large-scale coherent structure
kinetic energy as Q = (u′2 + v′2 + w′2)/2 and noting that
the mean flow is steady, the resulting energy equation for
the large-scale structures is

∂

∂x
(ρ U Q) +

1

r

∂

∂r
(rρ V Q) +

1

r

∂

∂φ
(ρ W Q)

+ u′p′x + v′p′r +
w′p′φ

r
+ u′ũ Ux + u′ṽ Ur

+
u′w̃

r
Uφ + v′ũ V x + v′ṽ V r +

v′w̃

r
V φ + w′ũW x

+ w′ṽ W r +
w′w̃

r
Wφ +

w′w̃

r
V +

v′w̃

r
W

=
1

Re

[
∆Q − (u′

ix)2 − (u′

ir)
2 −

(u′

iφ)2

r2
(26)

−
v′

r2
(v′ + 2w′

φ) −
w′

r2
(w′ − 2v′

φ)

]

INTEGRAL FORM OF THE ENERGY EQUATION

For the round jet, the mean quantities are assumed to
be axisymmetric. Thus, W = 0 and ∂( )/∂φ = 0. The
energy equations (25) and (26) for the mean flow and for
the large-scale structures, respectively, become:

∂

∂x

(
ρUK + u′ũ U + u′ṽ V + U P

)

+
1

r

∂

∂r

[
r
(
ρ V K + v′ũ U + v′ṽ V + V P

)]

− P

(
Ux +

1

r

(
rV
)
r

)
(27)

− Uxu′ũ − V xu′ṽ − U rv′ũ − V rv′ṽ −
1

r
V w′w̃

=
1

Re

[
∆K −

(
U ix

)2
−
(
U ir

)2
−

V
2

r2

]

∂

∂x
(ρ U Q) +

1

r

∂

∂r
(rρ V Q) + u′p′x + v′p′r +

w′p′φ
r

+ u′ũ Ux + u′ṽ Ur + v′ũ V x + v′ṽ V r +
w′w̃

r
V

=
1

Re

[
∆Q − (u′

ix)2 − (u′

ir)
2 −

(u′

iφ)2

r2
(28)

−
v′

r2
(v′ + 2w′

φ) −
w′

r2
(w′ − 2v′

φ)

]

The usual boundary layer-type approximations are ap-
plied to the mean quantities. The radial velocity is
much less than the axial velocity, V � U , and the
axial gradients are much less than the radial gradients,
∂( )/∂x � ∂( )/∂r. Second order terms are also ne-
glected with respect to first-order terms. Thus, the mean
flow energy equation reduces to:

∂

∂x

(
1

2
ρU

3

+ U P

)
+

1

r

∂

∂r

[
r

(
1

2
ρV U

2

+ V P

)]

− P

(
Ux +

1

r

(
rV
)
r

)
− Urv′ũ (29)

=
1

Re

[
1

r

(
r

(
U

2

2

)

r

)

r

− (U r)
2

]

Multiplying equation (29) by r and integrating over r, we
get:

d

dx

∫
∞

0

(
1

2
ρU

3

+ U P

)
rdr +

[
rV P

]r→∞

r=0

−

∫
∞

0

P Uxrdr −

∫
∞

0

P
(
rV
)
r
dr

−

∫
∞

0

Urv′ũrdr = −
1

Re

∫
∞

0

(Ur)
2rdr

since:
[
rρ V

U
2

2

]r→∞

r=0

= 0 and

[
r

(
U

2

2

)

r

]r→∞

r=0

= 0

The mean flow pressure is assumed to be constant across
the jet. The integral form of the mean energy equation re-
duces to the following simple form.

d

dx

∫
∞

0

1

2
ρU

3

rdr =

∫
∞

0

Urv′ũrdr−
1

Re

∫
∞

0

(Ur)
2rdr

(30)
Similarly, the energy equation for the coherent compo-

nent reduces to:

∂

∂x
(ρU Q) +

1

r

∂

∂r
(rρ V Q)

+ u′p′x + v′p′r +
w′p′φ

r
+ u′ṽ Ur

=
1

Re

[
∆Q − (u′

ix)2 − (u′

ir)
2 −

(u′

iφ)2

r2

−
v′

r2
(v′ + 2w′

φ) −
w′

r2
(w′ − 2v′

φ)

]
(31)

Multiplying (31) by r and integrating over r, we get:

d

dx

∫
∞

0

(ρU Q)rdr =

4NASA/TM—2002-211585



−

∫
∞

0

(
u′p′x + v′p′r +

w′p′φ
r

)
rdr −

∫
∞

0

u′ṽ Urrdr

−
1

Re

∫
∞

0

[
(u′

ix)2 + (u′

ir)
2 +

(u′

iφ)2

r2
(32)

+
v′

r2
(v′ + 2w′

φ) +
w′

r2
(w′ − 2v′

φ)

]
rdr

since
[
rρ V Q

]r→∞

r=0
= 0 and

[
rQr

]r→∞

r=0
= 0.

The physical interpretation of the terms appearing in the
energy equations is obvious. For the mean flow equation,
the left side is the mean flow advection of the mean flow
kinetic energy. The first term on the right-hand side of (30)
is the energy transfer from the mean flow to the coherent
structure, and the second term is the viscous dissipation of
the mean flow energy. As for the coherent mode equation
(32); the left-hand side is the mean flow advection of the
coherent mode kinetic energy. The first term in the right-
hand side is the work done by the coherent mode pressure
gradients, the second term is the energy transfer from the
mean flow to the coherent mode, and the last term is the
coherent mode energy dissipation.

SHAPE ASSUMPTIONS
To solve the above system of two energy equations,

shape assumptions need to be made regarding the radial
profiles. The mean flow is assumed to be a known function
of r and θ, where θ is the momentum thickness of the jet
shear layer, and the coherent structure profiles are assumed
to follow that of the locally-parallel, linear stability theory.

Single azimuthal modes
Considering single-frequency, single-azimuthal number

modes, the normal mode composition suggests that these
modes can be represented as:

u′

i(x, r, φ, t) = ûi(r)A(x) exp (Ψ + inφ) + cc (33)

p′(x, r, φ, t) = p̂(r)A(x) exp (Ψ + inφ) + cc (34)

ρ′(x, r, φ, t) = ρ̂(r)A(x) exp (Ψ + inφ) + cc (35)

Ψ = i

∫ x

0

α dχ − iωt

where (ˆ) denotes the radial shape function of the trans-
verse coordinate r at a given location along the jet. ûi(r),
p̂(r), and ρ̂(r) are eigenfunctions corresponding to a given
n and ω. Here, n is the azimuthal wave number indicating
the rotation around the jet centerline, α is the wave number
and cc denotes the complex conjugate. A(x) is the complex
amplitude function of x and is to be determined by a non-
linear analysis. In the nonlinear analysis, the linear growth
rate as determined by the imaginary part of α is absorbed

into A(x). The radial shape functions are normalized such
that ∫

∞

0

(
|û|2 + |v̂|2 + |ŵ|2

)
r dr = 1

Substituting the mode definitions into equation (30) and
extending the definition of the averaging process to include
the azimuthal direction,

( ) = lim
T→∞

1

2πT

∫
2π

0

∫ T

0

( ) dt dφ,

where T is a large time scale, we obtain

dθ

dx

dIam

dθ
= |A|2(Imw1 + Imw2) −

1

Re
Imd (36)

where

Iam =
1

2

∫
∞

0

ρU
3

r dr

Imw1 =

∫
∞

0

(v̂û∗ + cc)ρ
∂U

∂r
r dr

Imw2 =

∫
∞

0

(v̂ρ̂∗ + cc)U
∂U

∂r
r dr

Imd =

∫
∞

0

(
∂U

∂r

)2

r dr

In this analysis, the mean flow is characterized by the mo-
mentum thickness rather than by the axial distance. Hence,
the integrals in the energy equations are dependent on θ
instead of x.

Upon substitution into equation (32), we obtain for the
coherent mode:

d
(
Iaw|A|2

)

dx
= |A|2

(
−Imw1 − Imw3 − Ip −

1

Re
Iwd

)

(37)
where

Iaw =

∫
∞

0

(
|û|2 + |v̂|2 + |ŵ|2

)
ρUr dr

Imw3 =

∫
∞

0

(ûρ̂∗ + cc)V
∂U

∂r
r dr

Ip =

∫
∞

0

[
û(iαp̂)∗ + v̂

∂p̂∗

∂r
+

ŵ

r
(inp̂)∗ + cc

]
r dr

Iwd = 2

∫
∞

0

[(
|α|2 +

n2

r2

)(
|û|2 + |v̂|2 + |ŵ|2

)

+
1

r2

(
|v̂|2 + |ŵ|2

)
−

2

r2
(inv̂ŵ∗ + cc)

+

(∣∣∣∣
∂û

∂r

∣∣∣∣
2

+

∣∣∣∣
∂v̂

∂r

∣∣∣∣
2

+

∣∣∣∣
∂ŵ

∂r

∣∣∣∣
2
)]

r dr
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Pair of oblique waves
Experimental observations have indicated that the helical

modes appear in the form of a symmetrical pair with n, the
mode number, set to both ±1.8 In this case, the normal
mode definitions are modified as follows:

u′(x, r, φ, t) = û(r)A(x) exp (Ψ) cos(nφ) + cc (38)

v′(x, r, φ, t) = v̂(r)A(x) exp (Ψ) cos(nφ) + cc (39)

w′(x, r, φ, t) = ŵ(r)A(x) exp (Ψ) sin(nφ) + cc (40)

p′(x, r, φ, t) = p̂(r)A(x) exp (Ψ) cos(nφ) + cc (41)

ρ′(x, r, φ, t) = ρ̂(r)A(x) exp (Ψ) cos(nφ) + cc (42)

When these definitions are substituted into the integral
equations (30) and (32) and the averaging process is ap-
plied, we obtain the following sets of equations.

dθ

dx

dIam

dθ
= |A|2(Imw1 + Imw2) −

1

Re
Imd (43)

where

Iam =
1

2

∫
∞

0

ρU
3

r dr

Imw1 =
1

2

∫
∞

0

(v̂û∗ + cc)ρ
∂U

∂r
r dr

Imw2 =
1

2

∫
∞

0

(v̂ρ̂∗ + cc)U
∂U

∂r
r dr

Imd =

∫
∞

0

(
∂U

∂r

)2

r dr

d
(
Iaw|A|2

)

dx
= |A|2

(
−Imw1 − Imw3 − Ip −

1

Re
Iwd

)

(44)
where

Iaw =
1

2

∫
∞

0

(
|û|2 + |v̂|2 + |ŵ|2

)
ρUr dr

Imw3 =
1

2

∫
∞

0

(ûρ̂∗ + cc)V
∂U

∂r
r dr

Ip =
1

2

∫
∞

0

[
û(iαp̂)∗ + v̂

∂p̂∗

∂r
−

nŵp̂∗

r
+ cc

]
r dr

Iwd =

∫
∞

0

[(
|α|2 +

n2

r2

)(
|û|2 + |v̂|2 + |ŵ|2

)

+
1

r2

(
|v̂|2 + |ŵ|2

)
+

2n

r2
(v̂ŵ∗ + cc)

+

(∣∣∣∣
∂û

∂r

∣∣∣∣
2

+

∣∣∣∣
∂v̂

∂r

∣∣∣∣
2

+

∣∣∣∣
∂ŵ

∂r

∣∣∣∣
2
)]

r dr

The radial shape functions are normalized such that
∫

∞

0

(
|û|2 + |v̂|2 + |ŵ|2

)
r dr =

{
1, n = 0
2, n > 0

For the incompressible case, the above equations reduce to
that of Lee & Liu.10

Mean flow
In previous studies using the energy integral technique,

the shape assumption for the mean flow was provided by
analytic equations describing the velocity and density pro-
files.1, 3, 10 This works reasonably well in the initial po-
tential core region of the jet where the shear layer is well
described by a hyperbolic tangent or other functions and
the locally-parallel flow instability wave is predominantly
growing. In order to describe the full axial development
of growth and decay of the instability wave, the mean
flow must not only be described through the potential core
region, but also possibly downstream into the fully devel-
oped flow region. An analytic function description of the
mean flow would not be smoothly continuous throughout
this domain. Furthermore, an analytic function description
of the mean axial velocity (e. g. hyperbolic tangent) com-
bined with the Crocco-Busemann description of the density
profile provides a nonphysical radial velocity profile. A
proper physical description for the radial velocity profile
is required for computing integral Imw3. These objections
are overcome by determining the mean flow numerically.
We compute the mean flow using the procedure of Dahl &
Morris11 with the addition that the radial velocity profile is
computed from the mean continuity equation (17). Thus,
the numerical calculations provide the mean flow profile
shapes that smoothly transition from the initial region to
the fully developed region and that can be parameterized
by θ as required by the analysis.

The computational scheme for the mean flow of a jet was
developed using a set of compressible, Reynolds-averaged,
boundary layer equations with a modified mixing length
model to determine the Reynolds stresses. In nondimen-
sional form, the Reynolds stresses were computed by

−ρ u′v′ =
µT

ρjU jD

∂U

∂r
(45)

where µT is a turbulent viscosity and is a function of r and
x. Here, the unsteady terms represent all scales of turbu-
lence. If the fluid viscosity is given by µ, then in the shear
layer µT � µ.

Linear stability
The coherent structure profiles are determined from a

locally-parallel, linear stability theory. Given the known
complications that arise when using inviscid theory to com-
pute eigenvalues and eigenfunctions of the damped por-
tions of the instability wave, a compressible, viscous ap-
proach was used for the stability calculations following
the work of Morris.12, 13 The compressible equations of
motion are linearized about a locally-parallel flow and the
compressible parts of the viscous terms in the momentum
equations are neglected. In the energy equation, both vis-
cosity and diffusion effects are neglected. After applying
the modal decomposition for single azimuthal modes, the
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governing linearized equations become

∂v̂

∂r
+

v̂

r
+

in

r
ŵ + iαû − iM2

j (ω − αU)p̂ = 0 (46)

∂2v̂

∂r2
+

1

r

∂v̂

∂r
−

[
λ2 +

n2 + 1

r2

]
v̂ −

i2n

r2
ŵ − Re

∂p̂

∂r
= 0

∂2ŵ

∂r2
+

1

r

∂ŵ

∂r
−

[
λ2 +

n2 + 1

r2

]
ŵ +

i2n

r2
v̂ −

inRe

r
p̂ = 0

∂2û

∂r2
+

1

r

∂û

∂r
−

[
λ2 +

n2

r2

]
û − ρ

∂U

∂r
v̂ − iαRep̂ = 0

where λ2 = α2 − i ρ Re(ω − αU). For a pair of oblique
waves, the linearized equations are the same except the ŵ
is replaced by −iŵ in equations (46).

Using the boundary conditions given by Morris,13 we
obtain an eigenvalue problem for α. We used a finite-
difference approximation to discretize the system of equa-
tions (46). The eigenvalue was found from diagonalizing
the resulting matrix using a Newton iteration for refine-
ment. The four eigenfunctions in these equations were then
found using the inverse power method and normalizations
given previously. The density disturbance eigenfunction
was obtained from the continuity equation.

ρ̂ =
−iv̂

(ω − αU)

∂ρ

∂r
+ ρM2

j p̂ (47)

The eigenvalue depends not only on the flow profiles,
but it also depends on the parameters n,Mj , ω, and Re.
The mode number, the Mach number, and the frequency
are easily chosen parameters of interest. The choice of
Reynolds number is not as certain. Morris13 has shown
how the eigenvalue can depend on the choice of Re. In cal-
culations of viscous stability, setting Re to a constant has
been typical.14 We propose here that since the eigenvalues
are computed based on local flow conditions that a local
Reynolds number be used, also. Using the numerical mean
flow calculations, we determine a local Re from

Re =
ρjU jD

(µT)max

(48)

based on equation (45). This represents the maximum ef-
fect that turbulent viscosity has on the large structures.

Though this approach to local stability includes viscous
effects, it is found to have the same limitations as linear,
inviscid theory.15 The analytically continuous eigenvalue
solution for a damped, supersonically traveling mode has
corresponding eigenfunctions that diverge for large r rather
than converging as required to compute the integrals Ip and
Iwd. This limits the Mach number for the application of this
integral technique.

NUMERICAL RESULTS
Mean flow

The calculations were performed for seven jets with exit
Mach numbers ranging from 0.3 to 2.1 in increments of
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Fig. 1 Jet mean flow profiles computed at 8 axial locations.
Mj = 1.8; To = T∞.

0.3. In all cases, the jets were cold with the jet exit to-
tal temperature equal to the ambient temperature. As the
flow becomes supersonic, the jets were perfectly expanded.
An example of the computed jet profiles is shown in Fig-
ure 1 for a Mach 1.8 cold jet. The mean flow profiles have
smooth gradients in the radial direction and smoothly tran-
sition from the potential core region to the fully developed
region downstream. The radial velocity exhibits physically
realistic behavior. The flow is outward, a positive velocity,
toward the shear layer from the high speed potential core
and inward, a negative velocity, outside of the jet indicat-
ing entrainment of the outer fluid. These flow calculations
meet the requirements indicated for the stability calcula-
tions.

The mean flow calculations also provide the local mo-
mentum thickness and the local Reynolds number required
for the stability and the energy integral calculations. The
momentum thickness, θ, is computed based on only the ve-
locity profile and the local Reynolds number is computed
from equation (48) during the mean flow computations as
part of the turbulence model. The results for the seven
jets is shown in Figure 2. The jet spreading rate decreases
with Mach number, as expected, with the momentum thick-
ness remaining about the same, θ ≈ 0.22, at the end of
the potential core as indicated for the Mj = 0.3 and the
Mj = 1.8 jet cases. The local Reynolds number decreases
rapidly through the potential core from its initial value at
the jet exit.

Local stability

Using the mean flow as input, the local stability char-
acteristics were computed for each jet. The eigenvalue or
local wave number was determined from equations (46)
where the pair of oblique waves form was used in the com-
putations. Results are shown in Figure 3 for each jet where
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Fig. 2 Axial variation of local momentum thickness, θ, and
local Reynolds number, Eq. (48), computed for 7 jet Mach
numbers.

the Strouhal number was set to 0.2 and the azimuthal mode
number was n = ±1. The local wave number, α, is com-
plex consisting of a real part, αr, that governs the axial
phase change of the instability wave and an imaginary part,
αi, that relates to the local growth or decay of the wave. In
this figure, a negative αi represents a growing mode and a
positive value represents a decaying mode. We can see that
the growth rate decreases with an increase in Mach number.
This is expected; but, the decrease in growth rate is also a
function of the local decrease in Reynolds number.13

The local phase velocity is computed from ω/αr. In Fig-
ure 3, it is shown relative to the ambient speed of sound.
The relative phase velocity increases directly as the Mach
number increases. It is an indication of the ability of the
instability wave to directly radiate noise as the phase ve-
locity becomes supersonic relative to the ambient speed of
sound. Low speed jets do not radiate sound from this type
of source. As the jet speed increases, the higher phase ve-
locity combined with the growth and decay behavior of the
instability wave contribute to the ability of these waves to
radiate noise.15

Local energy integrals

The four integral terms in equation (43) govern the ad-
vection, transfer, and dissipation of the mean kinetic en-
ergy. The results of the computations of these integrals for
the seven jets are shown in Figure 4. As a function of θ, the
advection of the mean flow kinetic energy, as represented
by the integral Iam, is essentially the same for these jets.
This indicates that the integral is related to the jet spreading
rate. The rate of change of Iam is initially constant and then
gradually decreases. The energy moves downstream as the
jet spreads and then downstream of the potential core, the
advection slows.

The next two integrals, Imw1 and Imw2, represent the
transfer of energy from the mean flow to the coherent struc-
tures. The integral Imw1 has the classical form for the ve-
locity shear driven generation of the large-scale structures.
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α r

Fig. 3 Local wave number α = αr + iαi and phase veloc-
ity, cph = ω/αr, as a function of jet momentum thickness.
n = ±1; fD/Uj = 0.2.

It is negative indicating energy transfer from the mean flow
to the modes. Its magnitude is larger for low speed jets and
decreases in magnitude as the Mach number increases be-
coming a less efficient energy transfer process. However,
this view has to be balanced by the presence of Imw2. This
second integral is present due to compressibility effects. At
low speed, the magnitude of Imw2 is negligible. Its effect
steadily increases as the Mach number increases until at
Mj = 2.1, for example, Imw1 and Imw2 have similar mag-
nitude. Part of the reason for the increased magnitude of
Imw2 can be seen by explicitly substituting for ρ̂ in the in-
tegral using equation (47). The shear of the density profile
is a dominant factor in determining the magnitude of Imw2.
As the Mach number increased, the jet density increased
relative to ambient conditions increasing the density shear
rate.

One computational difficulty created with the current
viscous stability method is the presence of the pole in ρ̂
as the imaginary part of α passes from negative to posi-
tive (Eq. (47)). This must be accounted for in the integrals
containing ρ̂ along with the subsequent branch cut associ-
ated with damped modes. The discontinuities present in the
plots of Imw2 are clear evidence of the problem.

The final integral, Imd, concerns viscous dissipation of
the mean kinetic energy. In combination with the local
Reynolds number, it is initially two orders of magnitude
less than the other integrals and only becomes effective
when the energy transfer integrals approach zero. The dis-
sipation is about constant in the potential core region and
then decreases downstream. There is more dissipation for
lower speed jets than for the higher speed jets.

The next set of integrals, shown in Figure 5, govern the
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Fig. 4 Energy integrals from the mean flow energy equation
(43). n = ±1; fD/Uj = 0.2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
θ

−0.4

−0.3

−0.2

−0.1

0.0

0.2

0.3

0.4

0.5

0.6

0.7

0.3
0.6
0.9
1.2
1.5
1.8
2.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6
θ

−0.1

0.0

0.1

0.2

0.0

0.5

1.0

1.5

2.0

Iaw

Imw3

Iwd/Re

Ip

Mj

Fig. 5 Energy integrals from the coherent structure energy
equation (44). n = ±1; fD/Uj = 0.2.

kinetic energy in the coherent modes; in this case, a pair
of oblique modes. The energy comes from the mean flow
through Imw1 which now is positive. As it decreases in
magnitude, the work done by the coherent mode pressure
gradients, Ip, and the dissipation term begin to reduce the
energy in the coherent mode. Soon, the dissipation quickly
dominates to rapidly decrease the mode energy. The effect
of the compressibility integral Imw3 has some initial effects
of adding energy to the coherent modes, but it quickly has
negligible effects on further energy transfers.

Nonlinear calculations

Once the energy integrals were computed, the instability
wave amplitude function was determined from the solu-
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Fig. 6 Amplitude function magnitude comparisons between
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tion of the nonlinear differential equations (43) and (44).
An initial value differential equation solver implementing
a degree-1 Taylor series scheme with fixed point iteration
was used.16 The energy integral results were interpolated
as necessary to meet the requirements of the scheme. Only
the choice of the initial amplitude was needed to start the
integration at x = 0, where θ was given by the flow calcu-
lations.

The results for the computed amplitude function mag-
nitudes for the seven jets are shown in Figure 6. The
Strouhal number was set to 0.2, the mode number was
n = ±1, and the initial amplitude |Ao|

2 was 10−3. The
solid lines represent the nonlinear development of the am-
plitude function. The dashed lines are the correspond-
ing linear instability wave amplitude functions determined
from |Ao| exp(−

∫ x

0
αi dχ). It can be seen that in this case

the nonlinear amplitude reaches a peak and begins to de-
cay much sooner than the linear amplitude. This effect
becomes more pronounced as the Mach number increases.
At this level of initial amplitude, the mode energy causes
increased jet spreading that is more pronounced as Mach
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number increases as shown in Figure 7 for three example
jet Mach numbers. The increased jet spreading conversely
lessens energy transfer into the mode leading to earlier
saturation and decay for higher Mach number nonlinear
amplitudes compared to linear amplitudes.

It is interesting to notice that the initial small nonlinear
amplitude does not coincide with the linear amplitude. In-
tuitively, the expectation would be that nonlinear behavior
would begin to take affect after a period of linear growth.
An examination of the energy exchange integrals is re-
vealing. As mentioned earlier, the integral Imw3 has the
effect of initially adding mean flow energy into the coher-
ent modes. It contains terms with the radial mean velocity,
V , and the mean density shear, ∂ρ/∂r, which means that
Imw3 would not appear in a parallel, incompressible flow
analysis of this type. For the computed results presented
here, shown in Figure 5, Imw3 causes the amplitude to
grow faster immediately and not follow the linear growth.
To confirm this notion, the calculation used for Figure 6
was repeated for the Mj = 1.8 jet setting Imw3 = 0.
The results are shown in Figure 8. Obviously, without
the additional energy input into the coherent modes from
non-parallel flow and compressibility effects, the nonlinear
amplitude function does initially follow the linear growth
before nonlinear effects take over.

The initial amplitude used in the nonlinear calculations
also affects the results. This is shown in Figure 9 for the
Mj = 1.8 jet where the amplitude is normalized by its ini-
tial value. The initial amplitude ranges from |Ao|

2 = 10−6

to 10−2. The normalized linear amplitude line is the same
for all initial amplitudes. Hence, only one line is necessary
for comparison. The nonlinear amplitude peaks and be-
gins to decay sooner as the initial amplitude increases. The

0 5 10 15 20 25
x

10
−1

10
0

10
1

10
2

10
3

10
4

|A
|2 /|A

 o|
2

Linear

|Ao|
2
 = 10

−2
10

−3
10

−4
10

−5
10

−6

Fig. 9 Amplitude function magnitude comparisons with dif-
ferent initial amplitudes. Mj = 1.8; n = ±1; fD/Uj = 0.2.
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Fig. 10 Shear layer growth comparisons with different initial
amplitudes. Mj = 1.8; n = ±1; fD/Uj = 0.2.

stronger initial amplitude leads to the initial increased jet
spreading (Figure 10) that results in less total energy being
transferred into the mode from the mean flow. The end re-
sult is quicker saturation and decay of the mode amplitude.
This effect was also noted for the two-dimensional, com-
pressible shear layer.5 The weaker initial amplitudes result
in delayed spreading, allowing more energy to transfer into
the mode even to the point that the amplitude grows larger
than the linear amplitude. These results point to an issue
that occurs when comparing computed results to measured
data. In linear calculations, the unknown initial amplitude
is used as a parameter to match data with computations.
With nonlinear calculations, every different initial ampli-
tude changes the peak location and shape of the amplitude
function. To illustrate, Figure 11 shows qualitative com-
parisons of both nonlinear and linear amplitude functions
to measured data.17 The data is from a Mach 1.8 cold jet
and the Strouhal number is 0.25. The measurements in-
clude a spatial integration and include the presence of all
mode numbers. The calculations are for mode n = ±1;
hence, the comparison is inexact.
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calculations versus measured data.17

Mj = 1.8; n = ±1;
fD/Uj = 0.25.

CONCLUDING REMARKS
In this method, the large-scale structure is approximated

by a single-frequency, instability wave of a given azimuthal
mode number. The fact that the large-structures have a
spectrum of frequencies and multiple azimuthal modes has
been ignored. Furthermore, the interactions among these
modes and with the background, fine-scale turbulence have
been neglected. In addition, non-parallel flow effects are
not fully taken into account.

Despite these approximations, the results are clearly en-
couraging indicating qualitative agreements with experi-
ment. The modes initially grow linearly and then satu-
rate as a result of the nonlinear interactions and the flow-
divergence effects. Interestingly, the results indicate that
the initial growth of the modes becomes larger compared
to that of the linear, parallel-flow case due to non-parallel
flow and compressibility effects. The results also indi-
cate that the initial level of the disturbance influences the
development of the coherent structure and hence the radi-
ated noise field. As such, experimental data on jet noise
measurements need to be related to the initial level of the
disturbances.

REFERENCES
1. J. T. C. Liu. Contributions to the understanding of

large-scale coherent structures in developing free tur-
bulent shear flows. Adv. App. Mech., 26:183–309,
1988.

2. J. T. C. Liu. Coherent structures in transitional and
turbulent free shear flows. Ann. Rev. Fluid Mech.,
21:285–315, 1989.

3. R. R. Mankbadi. Dynamics and control of coher-
ent structures in turbulent jets. Appl. Mech. Review,
45:219–248, 1992.

4. R. R. Mankbadi. Transition, Turbulence and Noise:
Theory and Applications for Scientists and Engineers.
Kluwer, Boston, 1994.

5. K. Lee and J. T. C. Liu. Mixing enhancement in high-
speed turbulent shear layers using excited coherent
modes. AIAA J., 36:2027–2035, 1998.

6. G. Raman, E. J. Rice, and R. R. Mankbadi. Satura-
tion and the limit of jet mixing enhancement by single
frequency plane wave excitation: Experiment and the-
ory. AIAA Paper No. 88-3613, 1988.

7. H. Arbey and J. E. Ffowcs-Williams. Active cancel-
lation of pure tones in an excited jet. J. Fluid Mech.,
149:445–454, 1984.

8. T. R. Troutt and D. K. McLaughlin. Experiments
on the flow and acoustic properties of a moderate-
Reynolds-number supersonic jet. J. Fluid Mech.,
116:123–156, 1982.

9. V. Golubev, R. R. Mankbadi, and M. D. Dahl. Pre-
diction of the acoustic field associated with instability
wave source model for a compressible jet. AIAA Pa-
per No. 2002-2455, 2002.

10. S. S. Lee and J. T. C. Liu. Multiple coherent mode
interactions in a developing round jet. J. Fluid Mech.,
248:383–401, 1993.

11. M. D. Dahl and P. J. Morris. Noise from supersonic
coaxial jets, part 1: Mean flow predictions. J. Sound
Vib., 200:643–663, 1997.

12. P. J. Morris. The spatial viscous instability of axisym-
metric jets. J. Fluid Mech., 77:511–529, 1976.

13. P. J. Morris. Viscous stability of compressible ax-
isymmetric jets. AIAA J., 21:481–482, 1983.

14. C. K. W. Tam and K. C. Chen. A statistical model of
turbulence in two-dimensional mixing layers. J. Fluid
Mech., 92:303–326, 1979.

15. C. K. W. Tam and D. E. Burton. Sound generated by
instability waves of supersonic flows. parts 1 & 2. J.
Fluid Mech., 138:249–295, 1984.

16. J. R. Scott. Solving ODE initial value problems with
implicit Taylor series methods. NASA TM-2000-
209400, 2000.

17. J. Panda, K. B. M Q. Zaman, and R. G. Seasholtz.
Measurement of initial conditions at nozzle exit of
high speed jets. AIAA Paper No. 2001-2143, 2001.

11NASA/TM—2002-211585



This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA  22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC  20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Technical Memorandum

Unclassified

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio  44135–3191

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC  20546–0001

Available electronically at http://gltrs.grc.nasa.gov/GLTRS

June 2002

NASA TM—2002-211585
AIAA–2002–2451

E–13370

WU–708–90–33–00

17

Analysis of Three-Dimensional, Nonlinear Development of Wave-Like Structure
in a Compressible Round Jet

Milo D. Dahl and Reda R. Mankbadi

Jet noise; Noise source prediction; Instability waves; Nonlinear instability

Unclassified -Unlimited
Subject Category: 71 Distribution:   Nonstandard

Prepared for the Eighth Aeroacoustics Conference cosponsored by the American Institute of Aeronautics and Astronautics
and the Confederation of European Aerospace Societies, Breckenridge, Colorado, June 17–19, 2002.  Milo D. Dahl,
NASA Glenn Research Center; and Reda R. Mankbadi, Embry-Riddle Aeronautical University, Daytona Beach, Florida
32114. Responsible person, Milo D. Dahl, organization code 5940, 216–433–3578.

An analysis of the nonlinear development of the large-scale structures or instability waves in compressible round jets was
conducted using the integral energy method. The equations of motion were decomposed into two sets of equations; one
set governing the mean flow motion and the other set governing the large-scale structure motion. The equations in each
set were then combined to derive kinetic energy equations that were integrated in the radial direction across the jet after
the boundary-layer approximations were applied. Following the application of further assumptions regarding the radial
shape of the mean flow and the large structures, equations were derived that govern the nonlinear, streamwise develop-
ment of the large structures. Using numerically generated mean flows, calculations show the energy exchanges and the
effects of the initial amplitude on the coherent structure development in the jet.


